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ABSTRACT components which are not fully developed,
have excessive losses, limited bandwidths
The first fiber-optically controlled true and are not amenable to field-ready systems
time-delay array receiver capable of wide or applications. Additionally, many of the
instantaneous bandwidth is demonstrated. proposed techniques are suitable only for
The one-dimensional array consists of eight transmitter type applications. Only a handful
spiral elements arranged in a sparsely of mostly narrowband receiver systems have
populated, unequally-spaced array pattern been demonstrated [3, 8, 9]. We have
designed to suppress grating lobes and give arecently demonstrated a two-dimensional
narrow main beam. The receiver exhibited wideband array transmitter using a dispersive
+ 60° azimuth steering with no observable fiber-optic prism architecture that alleviates
squint over a microwave component-limited many of the aforementioned problem®]

bandwidth of 6-18 GHz. This technique is readily adaptable to
wideband array receivers.
INTRODUCTION Here, we demonstrate what we believe is

the first true time-delay control of an

Phased array antenna systems have seerultrawideband array receiver. The system
much recent development due primarily to demonstrates 60° azimuthal steering with
the inherent advantages of an electronically no observable beam squint over a microwave
steered beam over a mechanically steered component-limited bandwidth of 6 to 18
beam. These advantages include speed,GHz. As with the previously demonstrated
reliability, graceful degradation and long- transmit array beamformer, the technique is
term potential cost reduction due to the capable of being transitioned to real-world
possibility of transmitting and receiving ultrawideband array receiver systems.
multiple independent beams from a common

aperture. To date, many of these advantages SYSTEM CONFIGURATION
have not been realized due to the limitations
of traditional all-electronic control over the The fiber-optic receiver system is shown

individual array elements. The major schematically in Fig. 1. The microwave
drawbacks have been size, weight, loss and energy received by each of the eight array
narrow instantaneous bandwidths. Optical elements is amplified and fed to a series of
control techniques for phased array antennaselectro-optic Mach-Zehnder modulators
are capable of mitigating many of the (MZMs) which intensity modulate a

problems associated with all-electronic wavelength-tunable optical carrier. The
steering systems. In particular, optical optical carrier is provided by a tunable

techniques are able to provide the true time- gyteral cavity laser with a wavelengtk) (

delay (TTD) capability necessary for the n46 of 1470 to 1580 nm. The optical source
ultrawide instantaneous bandwidths required is amplified using an erbium-doped fiber

for many current and future applications. A 5 piifier hefore being corporately distributed
variety of optical TTD techniques have been ;'ihea eight MZMs. After modulation by the

proposed 1-7]. Many of these techniques \;7);5 ™ “the optical signals are fed to an
require specialized or precisely matched gight channel fiber-optic dispersive prism.
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Figure 1. The fiber-optic true time-delay receiver schematic.

The prism provides a wavelength dependent
time-delay for each element channel which is
proportional to the position of the

corresponding element in the array. The
signals are then optically combined and fed
to a high-speed photodiode (PD). Optical
interference problems are minimized by

differing the lengths of the corporate feeds to
each MZM by more than the laser coherence
length. Tuning the wavelength of the laser
changes the group velocity of the signal
propagating in each arm of the fiber-optic

prism and alters the time-delay gradient
across the array. Main beam steering is
accomplished by tuning the wavelength to

correspond to the conjugated,- of the
received time-delay taper associated with

energy arriving from an angled. The
microwave signals from the eight elements
add coherently at the PD forming a tunable
matched filter.

The fiber-optic prism was fabricated in a
binary “tree” type architecture using
wavelength flattened 50/50 couplers. The
nominal unit length of high-dispersion (HD)
fiber was 55 meters, which corresponds to a

60° angular steering with a wavelength de-
tuning of 15 nm for the given receive array.
The dispersionD, of the HD fiber was
approximately -88 ps/nm-km. The overall
delays for each of the optical paths were
equalized at a wavelength of 1550 nm using
dispersion shifted (DS) fiber. A final time-
delay trim was accomplished using
microwave trombones before the MZMs.
Fiber-optic attenuators were included in each
array element path for amplitude matching.

The receiver was used in conjunction with
eight matched spiral elements arranged in a
sparsely populated, unequally-spaced pattern
to suppress grating lobes. Such an
arrangement also serves to narrow the main
beam for improved angular discrimination.
The elements were spaced 7.5, 7.5, 7.5, 10.0,
10.0, 17.5 and 12.5 cm apart and were
capable of operating over the 2 to 18 GHz
band.

RESULTS AND DISCUSSION
The receive array was tested in a compact

radar range. A network analyzer was used to
drive a radiating horn antenna with a 2 to 18
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GHz bandwidth. The radiation from the horn [1]. E. N. Toughlian and H. Zmuda, “A

was collimated using a microwave mirror and
was detected by the fiber-optic receive
system mounted on a rotation pedestal. The
polarization mismatch between the radiating
horn and the spiral elements resulted in a 3 [2].
dB power penalty. Receive patterns were

taken over an angular span##0° in 0.25

increments. The full 6 to 18 GHz band was

recorded in 1 GHz increments.
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pattern chosen, the sidelobe levels are at the -
10 to -15 dB level near the main lobe and
increase to a -5 dB level further away.
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Figure 2. Comparison between the measured (solid) and calculated (dashed) antenna
receive patterns with the laser tuned for broadside radiation. Frequencies of 6,
8, 10, 12, 14, 16 and 18 GHz are shown with offsets for clarity. The array
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Figure 3. Comparison between the measured (solid) and calculated (dashed) antenna
receive patterns with the laser de-tuned for -60° azimuth radiation. Frequencies

of 6, 8, 10, 12, 14, 16 and 18 GHz are shown with offsets for clarity. The array
patterns have been normalized by the element pattern.
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